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Introduction 

The ‘Josephus problem’ refers to a famous puzzle in mathematics and computer science related to 

counting. Back in the day, a Jewish commander named Flavius Josephus was trapped in a cave with 40 of 

his soldiers by the Roman troops. Instead of surrendering and being captured, they decided to kill each 

other in turns (and the last surviving person would commit suicide). The rules of this (very grim) ritual 

were as follows:  

Josephus and 40 of his soldiers were arranged in a circle. After picking a starting position, 

everyone would kill the third person alive next to him, proceeding clockwise. This pattern 

continues until there is only one survivor in the circle, who would commit suicide. [6] 

However, Josephus and one of his soldiers would rather be captured and stay alive than be killed. Afraid 

of causing a riot, they had to follow this game. Their only chance of surviving was to figure out which are 

the two positions of the last survivors so they could both surrender to the Roman troops after everyone 

else was dead.  

Although this story has become a favorite word problem in mathematics classrooms, many current 

curricular activities related to the Josephus problem only focus on computing the position of the last 

survivor. This mainly involves solving a recurrence relation, where we would assume there are n people 

in the circle and every kth person is getting killed. In this project, we will look at the Josephus problem in 

a different way. Naturally, the Josephus problem determines a sequence of numbers – specifically, the 

sequence, or order, in which people are killed. We can consider this sequence as a permutation of [n]. In 

this project, I will design a lesson plan with the purpose of strengthening the students’ understanding of 

permutations using this interesting counting game.  

Students will start by getting familiar with the game. Then they will define these “Josephus functions” 

themselves, in which the formal definition of functions and some properties will be introduced. Finally, 
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students will explore whether the Josephus permutations form a subgroup of the associated symmetric 

group. The lesson plan focuses on undergraduate level math, especially in discrete math and group 

theory. Since the concepts of sequences and permutations are crucial in upper-level math courses like 

analysis and algebra, I think this lesson plan, with its interesting counting game, will help students 

strengthen their understanding of functions and provide them with an application of permutation 

groups. The first two parts of the lesson plan – those that deal with the Josephus problem and the 

Josephus functions – can be implemented in a discrete math course like MTH 356. The later topics – 

concerning permutations – fit most naturally in a group theory course like MTH 344. The overall goals of 

the curriculum are to introduce the formal definition of functions/sequences, as well as some 

properties, like surjections, injections, and bijections using the context of the Josephus problem as an 

example.  
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The Josephus Problem 

Josephus problem is a well-known theoretical problem in the field of mathematics and computer 

science. The problem was named after Titus Flavius Josephus, a Jewish historian in the first century A.D. 

He was a commander in the first Jewish-Roman war. In his publication The Works of Flavius Josephus: in 

three volumes; with illustration [6], there is a story that describes what is known as the Josephus 

problem today. The story is as such:  

In a battle with the Romans, Josephus and his 40 comrades were trapped in a cave by the 

Roman troops. In this situation, all the comrades would rather die than be slaves to the Romans. 

Hence, they chose to suicide over being captured. At last, they settled on a set of rules to kill 

each other as follows:  

They arranged themselves in a circle. One man was designated as number one, and they 

proceeded clockwise around the circle, killing every 3rd person alive next to him. The last person 

alive would commit suicide so no one would be captured.  

However, Josephus and one of his comrades would rather join the Romans and stay alive. Afraid 

of causing a riot, they had to play along. Their only chance of surviving was to figure out the 

position of the last two survivors so they can both surrender after everyone else was dead.  

Notice that there are three variables in this problem: (1) the number of people participating in this 

killing game, (2) the position of the person getting killed, and (3) the number of survivors at the end of 

the game. We will discuss these three variables in detail. 

 

 

 



JOSEPHUS PERMUTATIONS 6 

(1) Number of People 

This is a straightforward variable. We will define 𝑛 as the number of people participating in the killing 

game. Clearly, 𝑛 ∈ ℕ. For example, if there are 4 people participating in the killing game, then 𝑛 = 4 and 

these 4 people will be arranged in a circle labeled from 1 to 4.  

(2) Position of the First Person to be Killed 

This variable will be the most confusing among the three. In some texts, this is called the skip number. 

We will define 𝑘 as the skip number. The skip number is defined as the position of first person to be 

killed, counting the person who do the killing. For example, if 𝑘 = 2, then the second person will be the 

first person killed. As the process continues, every other (alternatingly around the circle) person will be 

killed. If 𝑘 = 3, then the person third person will be the first person killed, and every third person after 

that will be killed in turn. Clearly, 𝑘 ∈ ℕ. Also, it can be ambiguous in cases where 𝑛 < 𝑘. We will 

consider this situation later, and we will propose a solution to clear up the ambiguity.  

(3) Position of the survivors 

Now that we have defined the first two variables, we can see that they are the natural choices for 

independent variables. Indeed, we want to compute the position of the last survivors in a circle of 𝑛 

people with every 𝑘th person getting killed. We will define 𝑗 as such the position. This is a dependent 

variable, depending on 𝑛 and 𝑘. Hence, we will notate it as 𝑗𝑛,𝑘 .The goal is to come up with a formula 

that will compute 𝑗𝑛,𝑘 given the values of 𝑛 and 𝑘.  
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Simplified Josephus Problem 

Before we discuss the Josephus problem, we will discuss a simplified version of the problem. Having 𝑛 

fixed, we let 𝑘 = 2, which means every other person is killed in the circle and we will solve for 𝑗𝑛,2, 

which is the position of the last survivor in the circle. To simplify the notation, we will denote 𝑗(𝑛) = 𝑗𝑛,2 

in this section. There are several ways to determine 𝑗(𝑛) and we will solve for 𝑗(41) just to model it as 

close to the original Josephus problem as possible.  

Brute Force 

Now that we know the rules of the game, one method would be to just brute force the solution by 

drawing a circle with 𝑛 = 41 and eliminating people until there is only one left.  

The circle of elimination is shown below:  

 

If we follow the rule and kill every second person, the position of the last survivor will be 19.  

There is an observation worth noticing here. After the first round of elimination, all the even numbers 

are eliminated. This implies that the solution could NOT be an even number. By the parity of integers, 

the solution should be an odd integer.  
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With the Help of the Technology 

There are some online programs and applets that model the Josephus problem, and they will solve for 

the position of the last survivor when the number of people is plugged in. There is an applet shown 

below to demonstrate the solution of 𝑗(41):  

 

(webpage: https://webspace.ship.edu/jwcraw/dmrev2dev/Chapter1/1-1-Josephus.html) 

In this applet, we can also see that the position of the last survivor is position 19. Also, the order of 

elimination is provided. If we want to know the position of the last two survivors, they will be 19 and 35. 

Also, notice that the value of 𝑘 can be adjusted in the applet as well, and we will discuss the situation 

where 𝑘 ≥ 3 later.  

Pattern Noticing 

We can also solve the problem by noticing patterns in some small cases. We can create the following 

table for values of 𝑛 up to 9:  

𝑛 1 2 3 4 5 6 7 8 9 

𝑗(𝑛) 1 1 3 1 3 5 7 1 3 

 

There are a few observations worth noticing in the table:  

 1. When 𝑛 = 2𝑚 for some 𝑚 ∈ ℤ, then 𝑗(𝑛) = 1;  

https://webspace.ship.edu/jwcraw/dmrev2dev/Chapter1/1-1-Josephus.html
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 2. When 𝑛 = 2𝑚 + 𝑙 for some 𝑙 ∈ [0,2𝑚), 𝑗(𝑛) is an odd number and 𝑗(𝑛) = 2𝑙 + 1.   

These observations are actually sufficient for us to find the solution of the problem. By the division 

algorithm, we know that 𝑛 = 41 = 25 + 9. Then, we let 𝑙 = 9 and  

𝑗(𝑛) = 2(9) + 1 = 19 . 

Using this method, we can generate the solution of an infinite family of the simplified Josephus 

problems. Specifically, if 𝑛 is given, we can compute 𝑗(𝑛) by identifying the values of 𝑚 and 𝑙. Notice 

that there are three variables in the formula (𝑛, 𝑚, and 𝑙). It is not user friendly, as we need to 

decompose an integer to identify three variables. If we were able to deduce the formula to just one 

variable, then we could get the solution faster. Notice that 𝑚 and 𝑙 are determined once 𝑛 is picked. 

Hence, there is only one true independent variable, 𝑛. If we can express the formula solely in terms of 𝑛, 

then the formula will become explicit. There are two variables we need to eliminate. 

Our first step is to combine two formulas into one. Notice that 𝑙 appears in both formulas, so we can 

make a substitution and we obtain 

𝑗(𝑛) = 2(𝑛 − 2𝑚 ) + 1  . 

Our next step is to eliminate 𝑚. By the division algorithm, we know that  

𝑛 = 2𝑚 + 𝑙  . 

Solving for 𝑚, we obtain 

𝑚 = log2(𝑛 − 𝑙)  . 

Now we can eliminate 𝑚 and the formula becomes:  

𝑗(𝑛) = 2(𝑛 − 2log2(𝑛−𝑙)) + 1  . 
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Notice that we introduced 𝑙 back into the formula. The final step is to eliminate this 𝑙 without 

introducing any new variables. Remember that 𝑚 = log2(𝑛 − 𝑙) and 𝑚 ∈ ℕ ∪ {0}. We can conjecture 

that reducing 𝑙 indicates that we need to introduce some rounding functions. Notice that 𝑛 − 𝑙 < 𝑛. 

Then  

𝑚 = log2(𝑛 − 𝑙) < log2 𝑛  , 

Since the logarithmic function with base 2 is an increasing function. Also, by the division algorithm,         

𝑛 < 2𝑚+1. Then  

𝑚 = log2(𝑛 − 𝑙) < log2 𝑛 < log2 2𝑚+1 = 𝑚 + 1  . 

Remember that we need to round log2(𝑛 − 𝑙) so that this value equals to 𝑚. Clearly, we need to round 

down log2(𝑛 − 𝑙) so it equals 𝑚. Hence, we take the floor function, and we will obtain 

𝑚 = ⌊log2 𝑛⌋ < log2(𝑛 − 𝑙)  . 

Notice that there is no 𝑙 and 𝑚 anymore. 

Therefore, the formula 𝑗(𝑛) = 2(𝑛 − 2⌊log2 𝑛⌋) + 1 is an explicit formula solely in terms of 𝑛. To verify 

that we did our work right, we can compute 𝑗(41) and see whether we will get 19 as the output. Notice 

that  

𝑗(41) = 2(41 − 2⌊log2 41⌋) + 1 = 19  . 

We now obtain an explicit formula, and we can compute solutions to a family of simplified Josephus 

problems with it.  

Binary Number Pattern 

If we convert 𝑛 and 𝑗(𝑛), there is an interesting phenomenon. The table below shows the values of 𝑛 

and 𝑗(𝑛) in decimal and binary:  
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(𝑛)10
1 1 2 3 4 5 6 7 8 9 

(𝑗(𝑛))
10

 1 1 3 1 3 5 7 1 3 

(𝑛)2 1 10 11 100 101 110 111 1000 1001 

(𝑗(𝑛))
2

 1 01 11 001 011 101 111 0001 0011 

 

Notice that if the leading 1 of 𝑛 is moved to the last place, this is the 𝑗(𝑛). We conjecture that we can 

obtain our 𝑗(𝑛) in binary if we move the leading 1 in 𝑛 to the last place. If we can show that the 

conjecture is true, then we will have an alternative approach for solving the family of the simplified 

Josephus problem. In other words, to find 𝑗(𝑛), all we have to do is to convert n in binary, move the 

leading 1 to the last place, and convert this number back to decimal. This is our 𝑗(𝑛).  

In fact, this is the same approach as the previous one, but has been “translated” into binary from 

decimal. Consider our piecewise formula for 𝑗(𝑛):  

If 𝑛 = 2𝑚, then 𝑗(𝑛) = 1. We know that (𝑛)2 = 100 … 000 with 𝑚 zeros. Moving the leading 1 to the 

last place will result in 𝑗(𝑛) = 000 … 001 = 1.  

If 𝑛 = 2𝑚 + 𝑙, then (𝑛)2 = (2𝑚 + 𝑙)2 = (2𝑚)2 + (𝑙)2.  We know that 𝑗(𝑛) = 2𝑙 + 1. Then  

(𝑗(𝑛))
2

= (2𝑙 + 1)2 

          = (2𝑙)2 + 1 

          = (𝑙 + 𝑙)2 + 1 

          = (𝑙)2 + (𝑙)2 + 1 

          = 2(𝑙)2 + 1  . 

 
1 We will use (𝑛)10 to denote 𝑛 in decimal number system and (𝑛)2 to denote 𝑛 in binary number system.  
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Notice that (𝑙)2 = (𝑛)2 − (2𝑚)2. Then by substitution, we obtain 

(𝑗(𝑛))
2

= 2((𝑛)2 − (2𝑚)2) + 1  . 

Notice that subtracting (2𝑚 )2 causes us to remove the leading 1 in (𝑛)2. Multiplying by 2 causes us to 

add a 0 at the end, and adding one causes us to switch the ending 0 to 1. This shows why the method of 

moving the leading 1 to the last place in binary works to solve for the position of the last survivor.  

Now that we have an alternative approach, we will compute 𝑗(41). Notice that 41 can be decomposed 

as follows:  

41 = 1 ∙ 25 + 0 ∙ 24 + 1 ∙ 23 + 0 ∙ 22 + 0 ∙ 21 + 1 ∙ 20  . 

Hence, the binary of 41 is 101001.  

Using the binary number pattern, we know that 

𝑗(41) = (010011)10 

      = 0 ∙ 25 + 1 ∙ 24 + 0 ∙ 23 + 0 ∙ 22 + 1 ∙ 21 + 1 ∙ 20 

      = 16 + 2 + 2 = 19 .  

We get 𝑗(41) = 19, and this agrees with the solution given by previous approaches.  
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Actual Josephus Problem 

In the actual Josephus problem, we are solving for 𝑗41,3 (and the second to last spot, but we will focus on 

the number of the last survivor). In this section, we will assume that 𝑘 = 3 and 𝑗(𝑛) denotes 𝑗𝑛,3 . We 

want to compute 𝑗(41). We will look at several approaches for the actual Josephus problem.  

Brute Force 

This is always an available approach to solve the Josephus problem, once the rule of the game is 

established. Using brute force, we can get that 𝑗41,3 = 31. Hence, Josephus would want to stand in spot 

#31. However, the process gets very difficult as 𝑛 and 𝑘 get larger.  

With the Help of the Technology 

Thanks to modern technology, there are ready-to-use applets online that can solve the problem right 

away. The applet introduced in the last section can also be applied to solve the problem, shown below:  

 

Notice that the applet gives the position of the last survivor, which is 𝑗41,3 = 31.  

Maybe an Explicit Formula?  

Recall that in the simplified Josephus problem, we were able to deduce an explicit formula, where we 

can compute 𝑗(𝑛) by simply plugging in 𝑛 into the formula. However, this approach is not practical here 
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because there is no obvious pattern in the smaller cases when 𝑘 = 3. Let us take a look at the position 

of the last survivors in small cases (see below). 

𝑛 1 2 3 4 5 6 7 8 9 

𝑗(𝑛) 1 2 2 1 4 1 4 7 1 

 

It is difficult to see any pattern by looking at this small data set. However, if we consider the rule of the 

game, we can see that every time a person is killed, we are creating a smaller circle with the same rule. 

This is a hint that we might be able to come up with a recurrence relation, as we can create smaller 

cases related to the original case. 

Recurrence Relation for the Last Survivor 

The goal of this section is to come up with a recurrence relation of 𝑗𝑛,3 in terms of 𝑛.  

Imagine there is a circle with 𝑛 people labeled from 1 to 𝑛 clockwise, where 𝑛 ∈ ℕ. After eliminating 

one person from the circle, the total number of people in the circle is 𝑛 − 1, and the rule remains the 

same. In other words, if we consider the next person alive as the starting point, the position of the last 

survivor in the circle of 𝑛 − 1 people will be the same as that in the circle of 𝑛 people, as nothing has 

changed but the labels of people. Hence, we know that if we relabel, we can obtain a recurrence 

relation where 𝑗(𝑛) is determined by 𝑗(𝑛 − 1).  

Let us consider the relabeling. In a circle of n people where position 1 starts the killing, the person in 

position 3 will be killed and the next person alive is in position 4, who will be the person starting the 

killing in a circle of 𝑛 − 1 people. In other words, this will be the position 1 in the circle of 𝑛 − 1 people. 

Hence, the difference of labeling between these two cases is 3. Since the rule of the game remains the 

same in the two cases, 𝑗(𝑛) = 𝑗(𝑛 − 1) + 3 since, shifting the labels clockwise by 3 units causes the 

position of the last survivor to also get shifted by 3 units, even though they are the same person. Now 
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we have a recurrence relation. But we need to consider the nature of the addition operation. As we get 

fewer people in the circle, we will keep adding 3 in order to adjust our labeling. At some point, the label 

will exceed 𝑛 because ℤ under addition is an infinite group. We cannot have a label greater than 𝑛, as 𝑛 

is the number of people we started with. To fix this issue, we need to introduce modular arithmetic to 

ground the label no more than 𝑛. Hence, the recurrence relation becomes 

𝑗(𝑛) = (𝑗(𝑛 − 1) + 3) mod 𝑛 

as we don’t want any label greater than 𝑛.  

This causes another issue. Consider the output of modular arithmetic. By the division algorithm,          

𝑝 = 𝑛𝑞 + 𝑟 for some 𝑝, 𝑛, 𝑞, 𝑟 ∈ ℤ and 𝑟 ∈ [0, 𝑛). Hence, we know that 𝑝 mod 𝑛 = 𝑟, where 𝑟 ∈ [0, 𝑛). 

Looking back at our recurrence relation, we don’t have label 0, as we start our labeling in 1, and we can 

have label 𝑛 if position 𝑛 happens to be the position of the last survivor.  

In order to fix this issue, we need to create a “0” label by subtracting 1 in the relabeling process. Then 

the position of the last survivor will be (𝑗(𝑛 − 1) + 3 − 1) mod 𝑛. The difference in the labeling of two 

cases will be 1, so we just need to adjust the labeling by adding 1 back at the end. Hence, we now have 

our recurrence relation:  

𝑗(𝑛) = ([𝑗(𝑛 − 1) + 2] mod 𝑛) + 1  . 

In order to apply this relation, we need a base case. The smallest number of people in a circle is 1, and if 

there is only 1 person in a circle, by default, they will be the last survivor. Hence, we have 𝑗(1) = 1. Now 

we can compute the last survivor when 𝑛 = 41. An Excel function can be used to compute 𝑗(41) and 

the solution is 𝑗(41) = 31. This implies that if Josephus stands in position 31, he is guaranteed to be the 

last survivor.  
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Generalized Josephus Problem 

In the generalized Josephus problem, there are 𝑛 people in a circle and every 𝑘th person is killed. We 

are still interested in knowing the position of the last survivor. Hence, we want to compute 𝑗𝑛,𝑘 with 

arbitrary 𝑛 and 𝑘. The strategy of how to come up with a recurrence relation for the actual Josephus 

problem applies here. If we replace 3 by 𝑘 from the last section, then the recurrence relation becomes:  

𝑗𝑛,𝑘 = ([𝑗(𝑛 − 1) + 𝑘 − 1] mod 𝑛) + 1  . 

We know that once 𝑘 is fixed, then we can only change 𝑛, as you cannot change the rule of the game. 

Hence, 𝑘 is a constant once it is determined. Also, we saw how we can manipulate 𝑛 to smaller cases in 

the last section. Since the same strategy works for other values of 𝑘, the final formula will hold for all 

𝑛, 𝑘 ∈ ℕ.  

 

The Josephus Permutations 

For a Josephus problem with 𝑛, 𝑘 ∈ ℕ, it is obvious that there is a sequence of people being killed. We 

can define a permutation from {1,2, … , 𝑛} to the sequence of people being killed. We will denote by 𝐽𝑛,𝑘 

a permutation produced by the Josephus problem for a fixed 𝑛 ∈ ℕ and 𝑘 ∈ ℕ. We can make a few 

observations:  

1. As stated above, if we fix both 𝑛 ∈ ℕ and 𝑘 ∈ ℕ, a unique Josephus permutation will be produced.  

2. If we fix 𝑘 ∈ ℕ, then there are infinitely many Josephus permutations, as each 𝑛 ∈ ℕ will produce a 

unique Josephus permutation.  

3. If we fix 𝑛 ∈ ℕ, then we are permuting natural numbers 1 to 𝑛 by the rule of the Josephus problem. 

The Josephus permutation produced is an element in the symmetric group 𝑆𝑛. We know that 𝑆𝑛 is a 

finite group. This implies that there are finitely many Josephus permutations if we fix 𝑛 ∈ ℕ.  
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4. If we fix neither 𝑛 ∈ ℕ nor 𝑘 ∈ ℕ, similar to observation 2, then there are infinitely many Josephus 

permutations.  

Considering observation 3, we define 𝕁𝑛 to be the set of all Josephus permutations of size 𝑛. Then, by 

inspection, 𝕁𝑛 ⊆ 𝑆𝑛. In this section, we will look at the problem of whether 𝕁𝑛 forms a group for any 

arbitrary 𝑛 ∈ ℕ.  

 

Number of Josephus Permutations 

Notice that 𝕁𝑛 ⊆ 𝑆𝑛. Then |𝕁𝑛| ≤ |𝑆𝑛|. Before we dive into determining |𝕁𝑛|, we need to decide on 

whether there is any restriction of 𝑘 ∈ ℕ. It is obvious that the Josephus problem makes sense if 𝑘 < 𝑛.  

Consider the case where 𝑘 ≥ 𝑛. Notice that the Josephus problem operates on a circle. Every time 𝑘 ≥

𝑛, we can go over the circle and modular arithmetic will be used to reduce any larger number than 𝑛 to 

a unique number from 1 to 𝑛. Hence, the Josephus problem also makes sense when 𝑛 ≥ 𝑘. This implies 

that there is no restriction on 𝑘. For a fixed 𝑛 ∈ ℕ, 𝑘 can be any natural number.  

As stated in the previous observation, 𝕁𝑛 is a finite set but there are infinitely many values of 𝑘. This 

implies that there must be multiple values of 𝑘 that will produce the same Josephus permutation. By 

inspection, if we spin around the circle enough times, we will produce all the distinct Josephus 

permutations in 𝕁𝑛. We make the following claim:  

Proposition: Let 𝑛 ∈ ℕ. Then |𝕁𝑛| = 𝑙𝑐𝑚{1,2, … , 𝑛}.  

Proof: Let 𝑙(𝑛) = 𝑙𝑐𝑚{1,2, … , 𝑛}. Let 𝑘 ∈ {1, … , 𝑛} and 𝑘′ = 𝑘 + 𝑙(𝑛). Notice that 𝑙(𝑛) ≡ 0 (mod 𝑘) for 

all 𝑘 ∈ {1, … , 𝑛}. So 𝐽𝑛,𝑘 and 𝐽𝑛,𝑘′ will agree on every step. This implies that |𝕁𝑛| ≤ 𝑙(𝑛).  
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Now fix 𝑘1, 𝑘2 ∈ {1,2, … , 𝑙(𝑛)} such that 𝑘1 and 𝑘2 produce the same Josephus permutation. Then 𝑘1 

and 𝑘2 will satisfy the same constraints for each step of the Josephus problem. This implies that 𝑘1 and 

𝑘2 will have the same factors. By the unique factorization of integers, 𝑘1 = 𝑘2. This implies that each 

𝑘 ∈ {1,2, … , 𝑙(𝑛)} will produce a unique Josephus permutation. Hence, |𝕁𝑛| ≥ 𝑙(𝑛).  

Therefore, |𝕁𝑛| = 𝑙(𝑛) = 𝑙𝑐𝑚{1,2, … , 𝑛}.   ∎ 

Now we have determined the size of 𝕁𝑛. Clearly, 𝕁𝑛 is a non-empty and finite set for any 𝑛 ∈ ℕ. Also, we 

have established the fact that 𝕁𝑛 ⊆ 𝑆𝑛 for all  𝑛 ∈ ℕ. If 𝕁𝑛 is a group for some 𝑛 ∈ ℕ, then 𝕁𝑛 must be a 

subgroup of 𝑆𝑛. So we can determine whether 𝕁𝑛 is a group by using the finite subgroup test.  

Finite Subgroup Test: Let 𝐻 be a non-empty finite subset of a group 𝐺. Then 𝐻 is a subgroup if and only 

if 𝐻 is closed under the operation.  

Proof: Suppose 𝐻 ≤ 𝐺. Then by the definition of subgroups, 𝐻 is a group, and hence 𝐻 is closed.  

Conversely, suppose 𝐻 is closed under the operation. Let ℎ ∈ 𝐻. Then ℎ𝑘 ∈ 𝐻 for all 𝑘 ∈ ℕ by closure. 

Consider the infinite list ℎ, ℎ2, ℎ3, …. By closure, ℎ, ℎ2, ℎ3, … ∈ 𝐻. Since 𝐻 is finite, then there must be 

repeats. WLOG, let 𝑖, 𝑗 ∈ ℕ with 𝑖 < 𝑗 be such that ℎ𝑖 = ℎ𝑗. This implies that 

𝑒 = ℎ𝑖ℎ−𝑖 = ℎ𝑗ℎ−𝑖 = ℎ𝑗−𝑖  .  

This implies that 𝑒 ∈ 𝐻, since 𝑗 − 𝑖 > 0. Notice that ℎ𝑗−𝑖 = ℎℎ𝑗−𝑖−1 = ℎ𝑗−𝑖−1ℎ. By substitution, we 

have 𝑒 = ℎ𝑗−𝑖 = ℎℎ𝑗−𝑖−1 = ℎ𝑗−𝑖−1ℎ. Also, 𝑗 − 𝑖 − 1 ≥ 0. Then ℎ−1 = ℎ𝑗−𝑖−1 ∈ 𝐻. Since ℎ ∈ 𝐻 is 

arbitrarily chosen, then we showed that each element in 𝐻 has an inverse in 𝐻.  

We showed that 𝐻 has an identity and each element in 𝐻 has an inverse in 𝐻, in addition to 𝐻 being 

closed. By the full subgroup test, 𝐻 is a subgroup of 𝐺.  

∴ 𝐻 ≤ 𝐺 if and only if 𝐻 is closed under the operation.   ∎ 
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Using the finite subgroup test, all we need to know is whether 𝕁𝑛 is closed under composition. If so, then 

by the finite subgroup test 𝕁𝑛 is a group; if not, 𝕁𝑛 is not a group, as it is not closed.  

Another observation we can make before classifying 𝕁𝑛 is to consider the sizes of 𝕁𝑛 and 𝑆𝑛. We showed 

that 𝕁𝑛 = 𝑙𝑐𝑚[1,2, … , 𝑛] and 𝑆𝑛 = 𝑛!. We will compute the sizes of them for 𝑛 = 1,2,3,4,5,6,7 in the 

following table:  

𝑛 1 2 3 4 5 6 7 

|𝕁𝑛| 1 2 6 12 60 60 420 

|𝑆𝑛| 1 2 6 24 120 720 5040 

 

Based on the values of |𝕁𝑛| and |𝑆𝑛|, we can make the following three observations:  

1. for 𝑛 ∈ {1,2,3}, |𝕁𝑛| = |𝑆𝑛|;  

2. for 𝑛 ∈ {4,5}, |𝕁𝑛| =
|𝑆𝑛|

2
;  

3. for 𝑛 ≥ 6, |𝕁𝑛| <
|𝑆𝑛|

2
.  

We will develop the following section of classifying 𝕁𝑛 for all 𝑛 ∈ ℕ using these observations.  

 

Classification of Josephus Permutations for 𝒏 ∈ ℕ 

We will look at each 𝕁𝑛 and decide whether 𝕁𝑛 forms a group under permutation composition.  

Suppose 𝑛 = 1. By observation 1, |𝕁1| = |𝑆1|. Also, 𝕁1 ⊆ 𝑆1. This implies that 𝕁1 = 𝑆1 as a set. We know 

that 𝑆1 = {(1)} where (1) represents the identity permutation. Then 𝕁1 = {(1)}. Clearly, (1) is the 

Josephus permutation of 𝑛 = 1 and 𝑘 = 1. Then 𝕁1 = 𝑆1 is a group.  
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Suppose 𝑛 = 2. By observation 1, |𝕁2| = |𝑆2|. Also, 𝕁2 ⊆ 𝑆2. This implies that 𝕁2 = 𝑆2 as a set. Since 𝕁2 

and 𝑆2 are equipped with the same binary operation, which is function composition, then we can 

conclude that 𝕁2 = 𝑆2 as a group.  

Suppose 𝑛 = 3. Similar to the case where 𝑛 = 2, we can conclude that 𝕁3 = 𝑆3 as a group.  

Suppose 𝑛 = 4. By observation 2, |𝕁4| =
|𝑆4|

2
= 12. This is a small set, and we can write out every 

element in 𝕁4. All elements in 𝕁4 is listed in Appendix A. We will define two terms as follows:  

Definition 1: An even permutation is a permutation that can be expressed as a composition of an even 

number of transpositions.  

Definition 2: The subgroup of 𝑆𝑛 consisting of the even permutation of 𝑛 letters is called the alternating 

group 𝐴𝑛 on 𝑛 letters.  

Notice that all Josephus permutations in 𝕁4 are even permutations. Also, 𝕁4 ⊆ 𝑆4. Hence, 𝕁4 = 𝐴4 as a 

set. Based on Definition 2, 𝐴4 is a group. Hence, 𝕁4 = 𝐴4 as a group.  

Suppose 𝑛 = 5. By observation 2, |𝕁5| =
|𝑆5|

2
= 60. We have the same pattern as the case of 𝑛 = 4, so 

we can make the conjecture that 𝕁5 = 𝐴5. To show that our conjecture is true, a method is to list out all 

elements in 𝕁5 and see if all Josephus permutations in 𝕁5 are even. All elements of 𝕁5 are listed in 

Appendix B. By inspection, we can see that 𝕁5 consists of all even permutations of 5 letters. This implies 

that 𝕁5 = 𝐴5 as a set. Hence, 𝕁5 = 𝐴5 as a group.  

Before we continue on to the case where 𝑛 ≥ 6, by observation 3, we can no longer make the 

conjecture that 𝕁𝑛 = 𝐴𝑛, as |𝕁𝑛| <
|𝑆𝑛|

2
. Yet, notice that 0 < |𝕁𝑛| < ∞. By the finite subgroup test, to 

show that 𝕁𝑛 is a group (and hence a subgroup of 𝑆𝑛), we only have to show that 𝕁𝑛 is closed under 

composition. On the other hand, if 𝕁𝑛 is not closed under composition, then it violates the definition of a 
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binary operation, and hence 𝕁𝑛 is not a group. That is, we only need to know whether 𝕁𝑛 is closed in 

order to know whether 𝕁𝑛 is a group.  

We claim that 𝕁𝑛 is not a group for 𝑛 ≥ 6. Before we prove this claim, we will look at the following two 

useful propositions in number theory:  

Proposition 1: The sum of two integers with the same parity is even.  

Proof: Let 𝑚, 𝑛 ∈ ℤ have the same parity. Then we have two cases:  

Case ① Suppose both 𝑚 and 𝑛 are even. Then 𝑚 = 2𝑝 and 𝑛 = 2𝑞 for some 𝑝, 𝑞 ∈ ℤ. Then we have 

𝑚 + 𝑛 = 2𝑝 + 2𝑞 = 2(𝑝 + 𝑞)  . 

Since ℤ is a group, then 𝑝 + 𝑞 ∈ ℤ. This implies that 𝑚 + 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ, and hence 𝑚 + 𝑛 is 

even.  

Case ② Suppose both 𝑚 and 𝑛 are odd. Then 𝑚 = 2𝑝 + 1 and 𝑛 = 2𝑞 + 1 for some 𝑝, 𝑞 ∈ ℤ. Then we 

have 

𝑚 + 𝑛 = 2𝑝 + 1 + 2𝑞 + 1 

                                       = 2𝑝 + 2𝑞 + 2 = 2(𝑝 + 𝑞 + 1)  . 

Since ℤ is a group, then 𝑝 + 𝑞 + 1 ∈ ℤ. This implies that 𝑚 + 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ, and 𝑚 + 𝑛 is 

even.    

∴ 𝑚 + 𝑛 is always even if 𝑚 and 𝑛 have the same parity.   ∎ 

Proposition 2: The sum of two integers with different parity is odd.  

Proof: Let 𝑚, 𝑛 ∈ ℤ with different parity. WLOG, suppose 𝑚 is even and 𝑛 is odd. Then 𝑚 = 2𝑝 and       

𝑛 = 2𝑞 + 1 for some 𝑝, 𝑞 ∈ ℤ. Then we have 
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𝑚 + 𝑛 = 2𝑝 + 2𝑞 + 1 = 2(𝑝 + 𝑞) + 1  . 

Since ℤ is a group, then 𝑝 + 𝑞 ∈ ℤ. This implies that 𝑚 + 𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ.  

∴  𝑚 + 𝑛 is odd.   ∎ 

Now we will prove the claim that 𝕁𝑛 is not a group for 𝑛 ≥ 6, as it is not closed, in the following cases:  

Case ① Suppose 𝑛 ≥ 12 and 𝑛 is even. Then we can write 𝐽𝑛,2, 𝐽𝑛,𝑛−1 ∈ 𝕁𝑛 abstractly as follows:  

𝐽𝑛,2 = (
1 2 3 4 5 … 𝑛 − 1 𝑛
2 4 6 8 × … × ×

) 

and 

𝐽𝑛,𝑛−1 = (
1 2 3 4 5 6 … 𝑛 − 1 𝑛

𝑛 − 1 𝑛 − 2 𝑛 2 5 9 … × ×
)  . 

When composing them, we get 

𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 = (
1 2 3 4 5 … 𝑛 − 1 𝑛

𝑛 − 2 2 9 × × … × ×
)  . 

If this permutation is 𝐽𝑛,𝑘 for some 𝑘 ∈ ℕ, then the first step implies that 𝑘 ≡ 𝑛 − 2 (mod 𝑛), and hence 

𝑘 = 𝑛𝑞 + (𝑛 − 2) for some 𝑞 ∈ ℤ. Since 𝑛 is even, then both 𝑛𝑞 and 𝑛 − 2 are even. By Proposition 1, 𝑘 

is even.  

Notice that the third step implies that 𝑘 ≡ 7 (mod 𝑛 − 2), and hence 𝑘 = 7𝑞 + (𝑛 − 5) for some 𝑞 ∈ ℤ. 

Since 𝑛 is even, then (𝑛 − 2)𝑞 is even and 7 is odd. By Proposition 2, 𝑘 is odd.  

Yet, 𝑘 cannot be both even and odd. Then 𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛, and hence 𝕁𝑛 is not a group, as it is not 

closed.  

Case ② Suppose 𝑛 ≥ 23 and 𝑛 is odd. Then we can write 𝐽𝑛,2, 𝐽𝑛,𝑛−1 ∈ 𝕁𝑛 abstractly as follows:  
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𝐽𝑛,2 = (
1 2 3 4 5 … 𝑛 − 1 𝑛
2 4 6 8 × … × ×

) 

and 

𝐽𝑛,𝑛−1 = (
1 2 3 4 5 6 7 8 9 … 𝑛 − 1 𝑛

𝑛 − 1 𝑛 − 2 𝑛 2 5 9 14 20 × … × ×
)  . 

When composing them, we get 

𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 = (
1 2 3 4 5 … 𝑛 − 1 𝑛

𝑛 − 2 2 9 20 × … × ×
)  . 

If this permutation is 𝐽𝑛,𝑘 for some 𝑘 ∈ ℕ, then the second step implies that 𝑘 ≡ 4 (mod 𝑛 − 1), and 

hence 𝑘 = (𝑛 − 1)𝑞 + 4 for some   𝑞 ∈ ℤ. Since 𝑛 is odd, then (𝑛 − 1) is even and so is (𝑛 − 1)𝑞. Since 

4 is even, then by Proposition 1, 𝑘 is even. (The same result holds for the first and third steps.) 

Notice that the fourth step implies that 𝑘 ≡ 11 (mod 𝑛 − 3), and hence 𝑘 = (𝑛 − 3)𝑞 + 11 for some 

𝑞 ∈ ℤ. Since 𝑛 is odd, then (𝑛 − 3) is even and so is (𝑛 − 3)𝑞. Since 11 is even, then by Proposition 2, 𝑘 

is odd.  

Yet, 𝑘 cannot be both even and odd. Then 𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛, and hence 𝕁𝑛 is not a group, as it is not 

closed.  

What we haven’t shown is when 𝑛 ∈ {6,7,8,9,10,11,13,15,17,19,21}. We will provide a counterexample 

to disprove closure for each 𝕁𝑛 in these cases  

Case ③ Suppose 𝑛 ∈ {6,7,8,9,10,11,13,15,17,19,21}. We will consider three subcases.  

Subcase ①: When 𝑛 ∈ {6,8,10}, we claim that 𝐽𝑛,2 ∘ 𝐽𝑛,3 ∉ 𝕁𝑛. We will show that  𝐽6,2 ∘ 𝐽6,3 ∉ 𝕁6, and the 

same procedure also works for 𝑛 = 8 and 𝑛 = 10.  

If 𝑛 = 6, then consider 𝐽6,2, 𝐽6,3 ∈ 𝕁6. We know that 
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𝐽6,2 = (
1 2 3 4 5 6
2 4 6 3 1 5

) = (1 2 4 3 6 5) 

and 

𝐽6,3 = (
1 2 3 4 5 6
3 6 4 2 5 1

) = (1 3 4 2 6)    .   

When composing them, we will have the following:  

𝐽6,2 ∘ 𝐽6,3 = (1 6 2 5) = (
1 2 3 4 5 6
6 5 3 4 1 2

)   .  

If this permutation is 𝐽6,𝑘 for some 𝑘 ∈ ℕ, then the first step implies that 𝑘 ≡ 6 (mod 6) = 0 (mod 6), 

which shows that 𝑘 is even. The third step implies that 𝑘 ≡ 3 (mod 4), which shows that 𝑘 is odd. Yet, 𝑘 

cannot be both even and odd. Then    𝐽6,2 ∘ 𝐽6,3 ∉ 𝕁6, and hence 𝕁6 is not a group, as it is not closed.  

Subcase ②: When 𝑛 ∈ {7,9,11,13,15}, we claim that 𝐽𝑛,3 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛. We will show that  𝐽7,3 ∘ 𝐽7,2 ∉ 𝕁7, 

and the same procedure also works for 𝑛 ∈ {9,11,13,15}.  

If 𝑛 = 7, then consider 𝐽7,3, 𝐽7,2 ∈ 𝕁7. We know that  

𝐽7,3 = (
1 2 3 4 5 6 7
3 6 2 7 5 1 4

)   

and 

𝐽7,2 = (
1 2 3 4 5 6 7
2 4 6 1 5 3 7

)  . 

When composing them, we get 

𝐽7,3 ∘ 𝐽7,2 = (
1 2 3 4 5 6 7
6 7 1 3 5 2 4

)  . 
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If this permutation is 𝐽7,𝑘 for some 𝑘 ∈ ℕ, then the second step implies that 𝑘 ≡ 1 (mod 6), which 

shows that 𝑘 is odd. The fourth step implies that 𝑘 ≡ 2 (mod 4), which shows that 𝑘 is even. Yet, 𝑘 

cannot be both even and odd. Then    𝐽7,3 ∘ 𝐽7,2 ∉ 𝕁7, and hence 𝕁7 is not a group, as it is not closed.  

Subcase ③: When 𝑛 ∈ {17,19,21}, we claim that 𝐽𝑛,4 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛. We will show that 𝐽17,4 ∘ 𝐽17,2 ∉ 𝕁𝑛, 

and the same procedure also works for 𝑛 = 19 and 𝑛 = 21.  

If 𝑛 = 17, then consider 𝐽17,4, 𝐽17,2 ∈ 𝕁17. We know that  

𝐽17,4 = (
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
4 8 12 16 3 9 14 2 10 17 7 1 13 11 15 6 5

)    

and 

𝐽17,2 = (
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 4 6 8 10 12 14 16 1 5 9 13 17 7 15 11 3

)  . 

When composing them, we get 

𝐽17,4 ∘ 𝐽17,2 = (
1 2 3 4 5 … 17
8 16 9 2 × … ×

) 

If this permutation is 𝐽17,𝑘 for some 𝑘 ∈ ℕ, then the second step implies that 𝑘 ≡ 8 (mod 16), which 

shows that 𝑘 is even. The fourth step implies that 𝑘 ≡ 9 (mod 14), which shows that 𝑘 is odd. Yet, 𝑘 

cannot be both even and odd. Then    𝐽17,4 ∘ 𝐽17,2 ∉ 𝕁17, and hence 𝕁17 is not a group, as it is not closed.  

Now we showed that 𝕁𝑛 is not a group for 𝑛 ≥ 6, as it is not closed under composition. To sum up what 

we showed, we now know that  

𝕁𝑛 = 𝑆𝑛 for 𝑛 ∈ {1,2,3};  

𝕁𝑛 = 𝐴𝑛 for 𝑛 ∈ {4,5};  

𝕁𝑛 is not a group for 𝑛 ≥ 6.  
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Activities 

We will develop two Activities that capture the essence of the Josephus problem, and they are  

Activity 1: Josephus Problem 

Activity 2: Josephus Permutations 

The goal of the first activity is to get students more familiar with the idea of a Josephus permutation, 

which builds students up for Activity 2 in a group theory class. Yet, the first activity can be used in a 

lower-level math class. For example, Activity 1 can be implemented in a number theory class where 

students are expected to look for pattern of the last survivor. Since the original context of the Josephus 

problem might be grim for students, teachers can choose to sugarcoat the context as long as the pattern 

is preserved.  

 

Josephus Problem Activity 

Main Objective: students will be able to  

• be familiar with the Josephus problem in another context.  

• come up with a formula to predict the pattern using mathematical thinking.  

• realize that Josephus problem is a sequence/permutation.  

Background:  Students will be expected to have some prior knowledge of developing an algebraic 

expression to match up patterns as well as binary number systems.  
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Lesson Plan:  

• Introduce the class to a simple paraphrasing of the Josephus Problem2. Students are asked to 

solve some Josephus Problems in order to be familiar with it.  

• Split students in groups to work through some small examples of the Josephus Problem. Then 

collect the position of the winner with different circle sizes.  

• Have students make any observations of the position of the winner with different 𝑛, and have 

them express their observations using mathematical language.  

• Predict the position of the winner with some large value of 𝑛.  

 

 

 

 

 

 

 

  

 
2 To avoid the unpleasant context of the original Josephus problem (in which people die), we paraphrase in a 
different scenario.  
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Worksheet 1: Josephus Problem 
Million Dollar Game 

You are challenged to play the following game to win a million dollars:  

Suppose there are 41 people in a circle labelled 1 – 41 clockwise. Starting from spot #1, every second 

person on the left is asked to step out from the circle one at a time clockwise until there is only ONE 

person left in this circle. This lucky person will go home with a million dollars.  

Your goal is to win this game and become a millionaire!  

 

1. Do you believe that there is a pattern for this game, or does it just purely depend on luck?  

 

 

*In order to look for a pattern, we will start by considering a smaller circle. * 

Let 𝑛 ∈ ℕ be the number of people in the circle. In the interest of maximizing our time, we will split up 

the task based on different sizes of the circle. Your data will be collected at the end for analysis in class, 

so be careful with the procedure.  

(it is really hard to keep track of the steps when the size of the circle gets bigger…).  

 

2. Please fill out the following table and be ready to share your finding with the class 

𝑛 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝑗(𝑛, 2)               

𝑛 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

𝑗(𝑛, 2)               

*If your group has extra time, feel free to find out 𝑗(𝑛, 2) when 𝑛 is a large number (maybe 𝑛 = 41?)  

 

3. There are two observations worth noticing in the data. Please write down any observations you see.  
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We will define 𝑗(𝑛) as the position of the winner based on 𝑛. This is a function of 𝑛 ∈ ℕ.  

3. Can you write a rule for this function 𝑗(𝑛) using the two observations above?  

 

 

 

 

 

Instead of deciding whether 𝑛 is a power of 2, we want to have one formula that can gives us the 

position of the winner.  

4. Can you combine two observations and write one formula for 𝑗(𝑛) ? 

 

 

 

 

 

 

 

 

 

5. Notice that we didn’t have 𝑛 = 1 and 𝑛 = 2 in our data table. What is 𝑗(1) and 𝑗(2) using our 

formula? Does the value make sense?  

 

 

 

 

 

 

 

 

Now we have a formula that works for all 𝑛 ∈ ℕ!  
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We will look at numbers in binary number system. Our goal is to discover a pattern in the binary system.  

6. Please convert the data table from decimal system to the binary system below. What do you notice?  

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

(𝑛)2               

(𝑗(𝑛))
2
               

 

 

 

 

 

 

Extension: We will prove the pattern discovered in the binary system.  
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Million Dollar Game - Key 

 

You are challenged to play the following game to win a million dollars:  

Suppose there are 41 people in a circle labelled 1 – 41 clockwise. Starting from spot #1, every second 

person on the left is asked to step out from the circle one at a time clockwise until there is only ONE 

person left in this circle. This lucky person will go home with a million dollars.  

Your goal is to win this game and become a millionaire!  

 

1. Do you believe that there is a pattern for this game, or does it just purely depend on luck?  

Of course, there is a pattern. This is a math class and mathematicians don’t do things purely dependent 

on luck.  

*In order to look for a pattern, we will start by considering a smaller circle. * 

Let 𝑛 ∈ ℕ be the number of people in the circle. In the interest of maximizing our time, we will split up 

the task based on different sizes of the circle. Your data will be collected at the end for analysis in class, 

so be careful with the procedure.  

(it is really hard to keep track of the steps when the size of the circle gets bigger…).  

 

2. Please fill out the following table and be ready to share your finding with the class 

𝑛 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

𝑗(𝑛, 2) 3 1 3 5 7 1 3 5 7 9 11 13 15 1 

𝑛 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

𝑗(𝑛, 2) 3 5 7 9 11 13 15 17 19 21 23 25 27 29 

*If your group has extra time, feel free to find out 𝑗(𝑛, 2) when 𝑛 is a large number (maybe 𝑛 = 41?)  

 

3. There are two observations worth noticing in the data. Please write down any observations you see.  

Two observations are:  

1. when 𝑛 = 2𝑘 for some 𝑘 ≥ 2, the position of the winner is always 1.  

2. when 𝑛 ∈ [2𝑘 , 2𝑘+1) for some 𝑘 ≥ 2, the position of the winners for each 𝑛 forms a sequence of odd 

numbers.  

*Students will need these two observations to come up with a formula for the game, so make sure 

students can see these two observations before moving on.  
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We will define 𝑗(𝑛) as the position of the winner based on 𝑛. This is a function of 𝑛 ∈ ℕ.  

3. Can you write a rule for this function 𝑗(𝑛) using the two observations above?  

Observation 1 states that 𝑗(𝑛) = 1 if 𝑛 = 2𝑘 for some 𝑘 ≥ 2; and  

Observation 2 states that 𝑗(𝑛) = 2𝑙 + 1 if 𝑛 = 2𝑘 + 𝑙 for some 𝑘 ≥ 2 and 𝑙 ∈ [0,2𝑘).  

Hence, we can write 𝑗(𝑛) as a piecewise function below:  

𝑗(𝑛) = {
1 if 𝑛 = 2𝑘 for some 𝑘 ≥ 2 

2𝑙 + 1 if 𝑛 = 2𝑘 + 𝑙 for some 𝑘 ≥ 2, 𝑙 ∈ [0,2𝑘)
  . 

Instead of deciding whether 𝑛 is a power of 2, we want to have one formula that can gives us the 

position of the winner.  

4. Can you combine two observations and write one formula for 𝑗(𝑛) ? 

The idea is to reduce 𝑛, 𝑙, 𝑘 to one independent variable. The formula is 𝑗(𝑛) = 2(𝑛 − 2⌊log2 𝑛⌋) + 1. The 

detailed work can be found on page 9 to page 10.  

 

 

 

 

 

 

 

 

 

 

5. Notice that we didn’t have 𝑛 = 1 and 𝑛 = 2 in our data table. What is 𝑗(1) and 𝑗(2) using our 

formula? Does the value make sense?  

Using the formula, 𝑗(1) = 𝑗(2) = 1. The value makes sense. If there is only one person in the circle, it 

automatically makes him the winner by the rule of the game; if there are two people in the circle, spot 

#1 will ask spot #2 to step out of the circle, which results in only one person in the circle, which is spot 

#1.  

 

 

Now we have a formula that works for all 𝑛 ∈ ℕ!  
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We will look at numbers in binary number system. Our goal is to discover a pattern in the binary system.  

6. Please convert the data table from decimal system to the binary system below. What do you notice?  

𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

(𝑛)2 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 

(𝑗(𝑛))
2
 1 1 11 1 11 101 111 1 11 101 111 1001 1011 1101 

 

The pattern is the following: If we take the leading 1 in (𝑛)2 and put it in the last place, we get (𝑗(𝑛))
2
.  

 

 

 

 

Extension: We will prove the pattern discovered in the binary system.  

The proof of this pattern can be found on pages 11-12. 
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Josephus Permutations Activity 

Objectives: Students will be able to 

• Understand what is meant by a permutation and recognize the permutation group.   

• Work with a set of permutations whose values are given by a recursive process, rather than an 

explicit algebraic rule.  

• Apply the subgroup test to determine whether a set is a group (subgroup of a symmetric group).  

Background:  

Students should have some prior knowledge of permutation groups and subgroup tests. That also 

implies that students should be familiar with the group axioms. It is recommended that students have 

seen the alternating groups. This activity is meant to provide students with an application / example of 

permutation groups using the famous puzzle in mathematics called the Josephus Problem.  

Lesson Plan:  

Introduction  

• Introduce the class to a simple paraphrasing of the Josephus Problem3. Students are asked to 

solve some Josephus Problems in order to be familiar with it.  

• Demonstrate some examples and non-examples of Josephus permutations.  

Abstract the game  

• Instead of working with actual numbers 𝑛, 𝑘 ∈ ℕ, we consider variables 𝑛 and 𝑘.  

• Figure out the number of elements in this set of permutations for a fixed 𝑛.  

 
3 To avoid the unpleasant context of the original Josephus problem (in which people die), we paraphrase in a 
different scenario.  
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Subgroup Test  

• Determine whether the permutations form a subset of a symmetric group.  

• Working through the first example: 𝑛 = 4 and 𝑘 ∈ ℕ.  

• Working through the second example: 𝑛 = 6 and 𝑘 ∈ ℕ.  

• Apply the subgroup test to the set of Josephus permutations for 𝑛 = 6.  

• (time permitting) Examine the Josephus permutations for 𝑛 = 5 (or this could be an extension).  

Conclusion / Extension  

• Conclusion: Classify the Josephus permutations for 𝑛 ∈ {1,2,3,4}.  

• Extension: Examine the Josephus permutations for 𝑛 = 5.  

• Extension: Examine the Josephus permutations for 𝑛 > 6.  

Teacher note 

• The scenario of the Josephus permutation can be altered so that students will be interested in 

the problem. Also please do not mention the term “Josephus Problem” throughout the lecture 

so that students won’t Google it.  

• The activity requires a lot of counting. It will be beneficial if students can work in groups so that 

they can split up some tasks.  

• Some part of the activity requires extensive skills of number theory (showing closure and 

inverses). Hence, students are strongly encouraged to work with specific examples of the 

Josephus permutation rather than solving it abstractly.  

• The following link might be useful to obtain a Josephus permutation with a fixed 𝑛 and 𝑘:  

 http://webspace.ship.edu/deensley/mathdl/joseph.html 

 

http://webspace.ship.edu/deensley/mathdl/joseph.html
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Regarding the Josephus subgroup for 𝑛 = 5…  

• The Josephus subgroup for 𝑛 = 5 requires so much calculation / enumeration that students in 

the undergraduate level are unlikely to complete it in an hour class in addition to other 

activities. Hence, it could be a great extension for students to explore in their spare time.  

• If the class size is large (30 or more), the Josephus subgroup for 𝑛 = 5 can be classified using 

enumeration. Students can split up the task to find all 60 Josephus permutations for 𝑛 = 5 and 

compare it to 𝐴5.  

Regarding the Josephus permutation set for 𝑛 ≥ 6:  

• Coming up with a counterexample to disprove closure is not easy. Some hints can be given to 

students in the interest of saving class time. The counterexamples are provided as follows:  

• 𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛 when 𝑛 ≥ 12  and  𝑛 is even.  

• 𝐽𝑛,𝑛−1 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛 when 𝑛 ≥ 23  and  𝑛 is odd. 

• 𝐽𝑛,2 ∘ 𝐽𝑛,3 ∉ 𝕁𝑛 when 𝑛 ∈ {6,8,10}.  

• 𝐽𝑛,3 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛 when 𝑛 ∈ {7,9,11,13,15}.  

• 𝐽𝑛,4 ∘ 𝐽𝑛,2 ∉ 𝕁𝑛 when 𝑛 ∈ {17,19,21}.  
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Million Dollar Jackpot Game 

 

*We will call the permutation group the jackpot permutation group* 

You are challenged to play the following game to win a million dollars:  

Suppose there are 41 people in a circle labelled 1 – 41 clockwise. Starting from spot #1, every second person on the left is asked 

to step out from the circle one at a time clockwise until there is only ONE person left in this circle. This lucky person will go 

home with a million dollars.  

Your goal is to win this game and become a millionaire!  

 

Prequal: Explore this game 

1. Do you believe that there is a pattern for this game, or does it just purely depend on luck?  

 

*In order to solve for this pattern, we will start by looking at the smaller circle. * 

 

2. Play through the game with a smaller number of people in the circle. Pick your favorite number as the number of people in 

the circle and record the number of the last spot.  

(Bonus: Can you see a pattern and predict which spot you should stand to win a million? ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*I am sure you realize that the sequence of people stepping out forms a permutation. This is what we will focus on! * 
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Part I: Abstract the Game 

Let 𝑛 ∈ ℕ be the number of people in a circle and 𝑘 ∈ ℕ be the number skipped at each step. Then the order of people 

stepping out of the circle each time forms a permutation (We will call it a Jackpot permutation). Mathematicians like to make 

everything abstract so we will work through the abstraction.  

 

1. Write a Jackpot permutation of your choice of 𝑛 and 𝑘. 

 

 

 

Which notation did you use? Standard notation or cyclic notation. Which one do you think is better in this case?  

 

 

 

 

Notice that the larger 𝑛 gets, the longer the permutation can get, which adds more difficulty. So, we will fix 𝑛 and let 𝑘 be any 

arbitrary natural numbers.  

 

3. Given a permutation, can you tell whether this permutation can be generated by the rule of the game? We will look at a few 

examples:  

(
1 2 3 4
3 2 4 1

) (
1 2 3 4
2 3 4 1

) (
1 2 3 4
3 4 1 2

) 

 

 

 

 

 

 

 

 

4. Can you guess how many of such permutations they are for a fixed 𝑛?  
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Part II: Permutation Groups Example 1 

Now we move to some group theory stuff.  

 

Consider 𝑛 = 4. We will use 𝕁4 to denote the set of all permutations generated by the rule with 𝑛 = 4.  

I claim that 𝕁4 is a group.  

Proof: We will show that 𝕁4 is a group by showing it satisfies the group axioms.  

 

𝒢1: Is the operation in 𝕁4 associative?  

 

 

 

 

 

 

 

 

 

𝒢2: Is there an identity in 𝕁4?   

[Hint: How can you modify the rule so that it corresponds to the identity permutation? ] 

 

 

 

 

𝒢3: For each permutation in 𝕁4, is there an inverse in 𝕁4?  

 

 

 

 

 

 

 

 

*If you can’t solve this right away, you can just take my word and assume inverses exist for each element in 𝕁4 for now!* 
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Question: Can I conclude that 𝕁4 is a group? What am I missing? Show the missing piece!  

 

 

 

 

 

 

 

 

 

 

Now we can conclude that 𝕁4 is a group!  

 

Consider the size of 𝕁𝑛 and 𝑆𝑛. We know that |𝕁𝑛| = 𝑙𝑐𝑚[1,2, … , 𝑛] and |𝑆𝑛| = 𝑛!. Compare these two numbers. What do you 

notice?  

 

 

 

 

 

 

 

Using this pattern, what can you say about 𝕁1, 𝕁2, 𝕁3, and 𝕁5.  

 

 

 

 

 

 

 

 

 

*We will put aside 𝕁5 now and take a look at 𝕁6, since |𝕁6| < 𝐴6, then we cannot conjecture that 𝕁6 is a group for now. *  
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Part III: Permutation Groups Example 2 

A natural question to ask is whether 𝕁𝑛 is a group for ALL 𝑛 ∈ ℕ. We will take a look at 𝕁6.  

 

What is your claim? Do you believe that 𝕁6 is a group? Justify your response.  

(That being said, if you believe 𝕁6 is a group, then prove it; if you think 𝕁6 is not a group, then why it isn’t).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extension: We left out 𝕁5. If you are interested in determining whether 𝕁𝑛 forms a group for any 𝑛 ∈ ℕ, there are three 

questions that might be able to help.  

• Is 𝕁5 isomorphic to 𝐴5?   

• Is 𝕁𝑛 a group when 𝑛 > 6?  

See if you can answer these questions.   
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Million Dollar Jackpot Game - Key 

*We will call the permutation group the jackpot permutation group* 

You are challenged to play the following game to win a million dollars:  

Suppose there are 41 people in a circle labelled 1 – 41 clockwise. Starting from spot #1, every second person on the left is asked 

to step out from the circle one at a time clockwise until there is only ONE person left in this circle. This lucky person will go 

home with a million dollars.  

Your goal is to win this game and become a millionaire!  

 

Prequal: Explore this game 

1. Do you believe that there is a pattern for this game, or does it just purely depend on luck?  

Of course, there is a pattern. This is a math class and mathematicians don’t do things purely dependent on luck.  

*In order to solve for this pattern, we will start by looking at the smaller circle. * 

 

2. Play through the game with a smaller number of people in the circle. Pick your favorite number as the number of people in 

the circle and record the number of the last spot.  

(Bonus: Can you see a pattern and predict which spot you should stand to win a million? ) 

We will provide a table of the number of people and the number of the last spot in the circle below:   

𝑛 𝐽(𝑛) 

1 1 

2 1 

3 3 

4 1 

5 3 

6 5 

7 7 

8 1 

9 3 

10 5 

11 7 

12 9 

13 11 

 

14 13 

15 15 

16 1 

17 3 

18 5 

19 7 

20 9 

21 11 

22 13 

23 15 

24 17 

25 19 

26 21 

27 23 

 

28 25 

29 27 

30 29 

31 31 

32 1 

33 3 

34 5 

35 7 

36 9 

37 11 

38 13 

39 15 

40 17 

41 19 

The winning spot is spot #19.  

*I am sure you realize that the sequence of people stepping out forms a permutation. This is what we will focus on! * 
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Part I: Abstract the Game 

Let 𝑛 ∈ ℕ be the number of people in a circle and 𝑘 ∈ ℕ be the number skipped at each step. Then the order of people 

stepping out of the circle each time forms a permutation (We will call it a Jackpot permutation). Mathematicians like to make 

everything abstract so we will work through the abstraction.  

 

1. Write a Jackpot permutation of your choice of 𝑛 and 𝑘. 

An example will be the permutation of 𝑛 = 5 and 𝑘 = 2.  

(
1 2 3 4 5
2 4 1 5 3

)   OR (1 2 4 5 3) 

 

Which notation did you use? Standard notation or cyclic notation. Which one do you think is better in this case?  

Standard notation is better since it indicates the total number of people (𝑛), whereas the cyclic notation might not express 𝑛 

explicitly (there might be more cycles consisting of one element in the end that didn’t get written out).  

Also, it is clear to see the sequence of when people step out of the circle in the standard notation.  

 

Notice that the larger 𝑛 gets, the longer the permutation can get, which adds more difficulty. So, we will fix 𝑛 and let 𝑘 be any 

arbitrary natural numbers.  

 

3. Given a permutation, can you tell whether this permutation can be generated by the rule of the game? We will look at a few 

examples:  

(
1 2 3 4
3 2 4 1

) (
1 2 3 4
2 3 4 1

) (
1 2 3 4
3 4 1 2

) 

 

The first permutation can be generated by the rule. It is when 𝑛 = 4 and 𝑘 = 3.  

The third permutation can be generated by the rule. It is when 𝑛 = 4 and 𝑘 = 7.  

The second permutation CANNOT be generated by the rule because:  

 The first spot from 1 to 2 indicates that 𝑘 ≡ 2 (mod 4);  

 The second spot from 3 to 3 (remember that 2 is stepped out) indicates that 𝑘 ≡ 1 (mod 3);  

 The third spot from from 4 to 1 indicates that 𝑘 ≡ 1 (mod 2) 

The second spot indicates 𝑘 is even, but the third spot indicates 𝑘 is odd. There is no such 𝑘 ∈ ℕ.  

4. Can you guess how many of such permutations they are for a fixed 𝑛?  

Instead of having them prove that the number of such permutations is 𝑙𝑐𝑚[1,2, … , 𝑛], we will have students take a guess and 

then point out this fact (to avoid too much time spent on number theory stuff).  
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Part II: Permutation Groups Example 1 

Now we move to some group theory stuff.  

 

Consider 𝑛 = 4. We will use 𝕁4 to denote the set of all permutations generated by the rule with 𝑛 = 4.  

I claim that 𝕁4 is a group.  

Proof: We will show that 𝕁4 is a group by showing it satisfies the group axioms.  

 

𝒢1: Is the operation in 𝕁4 associative?  

Recall that permutations are just functions. In order words, show that function compositions are associative.  

Let 𝑓, 𝑔, ℎ be functions with corresponding domains and codomains and 𝑥 ∈ 𝐷 where 𝐷 is the domain of ℎ. Then 

((𝑓 ∘ 𝑔) ∘ ℎ)(𝑥) = (𝑓 ∘ 𝑔)(ℎ(𝑥)) = 𝑓 (𝑔(ℎ(𝑥))) 

and 

(𝑓 ∘ (𝑔 ∘ ℎ))(𝑥) = 𝑓((𝑔 ∘ ℎ)(𝑥)) = 𝑓 (𝑔(ℎ(𝑥))). 

Notice that ((𝑓 ∘ 𝑔) ∘ ℎ)(𝑥) = 𝑓 (𝑔(ℎ(𝑥))) = (𝑓 ∘ (𝑔 ∘ ℎ))(𝑥) for any arbitrary 𝑥 ∈ 𝐷. Then (𝑓 ∘ 𝑔) ∘ ℎ = 𝑓 ∘ (𝑔 ∘ ℎ).  

Therefore, function composition is associative, and hence, the operation in a permutation group is associative.  

 

𝒢2: Is there an identity in 𝕁4?   

[Hint: How can you modify the rule so that it corresponds to the identity permutation? ] 

Consider 𝐽1 = (1), which is the permutation of 𝑘 = 1. This is the identity permutation.  

Let 𝐽 ∈ 𝕁5. Then (1)𝐽 = 𝐽(1) = 𝐽.  

 

𝒢3: For each permutation in 𝕁4, is there an inverse in 𝕁4?  

The pattern is rather complicated. The inverse of each element in 𝕁4 is presented in Appendix A.  

Students should be considering each specific element and determine whether their inverse is in 𝕁4.  

 

*This question is intended to encourage students to write out each element in 𝕁4 for later comparison to 𝐴4. * 

 

 

 

 

 

*If you can’t solve this right away, you can just take my word and assume inverses exist for each element in 𝕁4 for now!* 
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Question: Can I conclude that 𝕁4 is a group? What am I missing? Show the missing piece!  

We showed that 𝕁4 satisfies the group axioms ASSUMING composition in 𝕁4 is a binary operation. Hence, we need to show that 

the composition is a binary operation.  

We need to show that 𝕁4 is closed under composition.  

We can show closure by eliminating 𝑘’s according to each spot in the permutation. Since |𝕁4| = 𝑙𝑐𝑚{1,2,3,4} = 12, then the 

list is short and manageable. If students having trouble using this method, we propose a different method as follows:  

Consider that |𝕁4| = 12 =
24

2
=

4!

2
=

|𝑆4|

2
. We can conjecture that 𝕁4 = 𝐴4 (this is a plausible conjecture). Once students wrote 

out all the elements in 𝕁4, they can realize that 𝕁4 consists of ALL the even permutations (See Appendix A), and hence  𝕁4 = 𝐴4. 

Showing 𝐴4 is a subgroup of 𝑆4 proves that 𝕁4 is a group (by transitivity of isomorphisms).  

*Students are encouraged to show that 𝐴4 is a group by finite subgroup test* 

 

Now we can conclude that 𝕁4 is a group!  

 

Consider the size of 𝕁𝑛 and 𝑆𝑛. We know that |𝕁𝑛| = 𝑙𝑐𝑚{1,2, … , 𝑛} and |𝑆𝑛| = 𝑛!. Compare these two numbers. What do you 

notice?  

We have the following table to record their values:  

𝑛 1 2 3 4 5 6 7 

|𝕁𝑛| 1 2 6 12 60 60 420 

|𝑆𝑛| 1 2 6 24 120 720 5040 

 

Students should notice that  |𝕁𝑛| = |𝑆𝑛| when 𝑛 ∈ {1,2,3}, |𝕁𝑛| =
|𝑆𝑛|

2
 when 𝑛 ∈ {4,5}, and |𝕁𝑛| <

|𝑆𝑛|

2
 when 𝑛 ≥ 6.  

 

Using this pattern, what can you say about 𝕁1, 𝕁2, 𝕁3, and 𝕁5.  

Notice that 𝕁𝑛 ⊆ 𝑆𝑛 and |𝕁𝑛| = |𝑆𝑛| when 𝑛 ∈ {1,2,3}. This implies that 

𝕁1 = 𝑆1, 𝕁2 = 𝑆2, and 𝕁3 = 𝑆3. 

We showed that 𝕁4 ≅ 𝐴4, which makes 𝕁4 a group (We did so by noticing that |𝕁4| = |𝐴4| and make the conjecture) 

Since |𝕁5| = |𝐴5|, then we can make the plausible conjecture that 𝕁5 ≅ 𝐴5.  

See Appendix B that all permutations in 𝕁5 are even permutation, and hence 𝕁5 ≅ 𝐴5.  

 

 

 

 

 

*We will put aside 𝕁5 now and take a look at 𝕁6, since |𝕁6| < 𝐴6, then we cannot conjecture that 𝕁6 is a group for now. *  
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Part III: Permutation Groups Example 2 

A natural question to ask is whether 𝕁𝑛 is a group for ALL 𝑛 ∈ ℕ. We will take a look at 𝕁6.  

 

What is your claim? Do you believe that 𝕁6 is a group? Justify your response.  

(That being said, if you believe 𝕁6 is a group, then prove it; if you think 𝕁6 is not a group, then why it isn’t).  

 

𝕁6 is NOT a group as it is NOT closed. A counterexample will be 𝐽6,2 ∘ 𝐽6,3. Notice that 

𝐽6,2 = (
1 2 3 4 5 6
2 4 6 3 1 5

) = (1 2 4 3 6 5) 

and 

𝐽6,3 = (
1 2 3 4 5 6
3 6 4 2 5 1

) = (1 3 4 2 6) 

Then when composing these two permutations, when get 

𝐽6,2 ∘ 𝐽6,3 = (1 2 4 3 6 5)(1 3 4 2 6) 

                     = (1 6 2 5) = (
1 2 3 4 5 6
6 5 3 4 1 2

). 

The first step is from 1 to 6. Then 𝑘 is divisible by 6, and hence 𝑘 ≡ 0 (mod 6), which implies that 𝑘 is even.  

The second step is from 1 to 5. Then 𝑘 is divisible by 5, and hence 𝑘 ≡ 0 (mod 5).  

The third step is from 1 to 3. Then 𝑘 is divisible by 3, and hence 𝑘 ≡ 3 (mod 4), which implies that 𝑘 is odd.  

Notice that 𝑘 cannot be both even and odd. Hence, this permutation CANNOT be generated by the rule. We can conclude that 

𝕁6 is NOT closed. It fails the finite subgroup test, and hence, 𝕁6 is NOT a group.  

 

 

 

 

 

 

 

 

 

 

Extension: We left out 𝕁5. If you are interested in determining whether 𝕁𝑛 forms a group for any 𝑛 ∈ ℕ, there are three 

questions that might be able to help.  

• Is 𝕁5 isomorphic to 𝐴5?   

• Is 𝕁𝑛 a group when 𝑛 > 6?  

See if you can answer these questions.  
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Implementation and Reflection 

The second lesson plan presented in the previous section was implemented in a 300-level group theory 

class (MTH 344) taught by Dr. Julie Bracken. After communicating with Dr. Bracken about how much 

material in group theory the class has gone over, I decided to cut off unnecessary material in number 

theory and focus more on the group theory, like subgroups, permutation groups, and alternating 

groups. The duration of the class is 1 hour and 5 minutes. A concern I had before implementing the 

lesson plan was the length of the activity. Thankfully, Dr. Bracken agreed to let me get started using the 

last 10 minutes of the previous class to introduce the rule of the game (labeled prequel in the lesson 

plan) so students could get started on the Josephus permutation (labeled part I, II, and III in the lesson 

plan) on the implementation day, which gave me 1 hour and 15 minutes in total for the implementation. 

The estimated time spent on each part of the activity is listed below:  

Section Duration 

Prequel: Explore the Game 20 minutes 

Part I: Abstract the Game 15 minutes 

Part II: Permutation Group Example 1 25 minutes 

Part III: Permutation Group Example 2 15 minutes 

 

Because the primary goal of the activity is to provide students with an example of a subgroup of a 

symmetric group using an actual scenario, more time was spent on part II of the activity, where students 

were asked to determine whether 𝕁4 is a group using what they have learned about groups, subgroups, 

and permutation groups. That being said, the prequel and part I of the activity was meant to build 

students up so they have all necessary information to tackle on part II.  
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The actual implementation did not go well as I predicted. We will discuss the difficulty of each section.  

In the prequel, which was implemented in the last 10 minutes of the previous lecture, I mostly went 

through the rule of the game, hoping students will have a day to process this information, as the rule 

might be a little confusing at the first glimpse. A worksheet, as well as a detailed instruction, was given 

to students to study in their own time. Students did not raise any questions in the last 10 minutes of the 

previous lecture, which gave me a false impression that students could comprehend the rule easily. In 

the first 10 minutes of the lecture in the implementation day, I had hoped to start in on part I. Yet, quite 

a few students expressed their confusion about the rule of the game. Given that this was a crucial step 

of the activity, another 10 minutes was spent to ensure students fully understood it.  

In part I of the activity, a difficulty I observed in class was the confusion about 𝑘. We defined 𝑘 as the 

number of people skipped in each step. In the original million-dollar question, “every person on the left” 

implies that every second person is asked to step out, indicating that 𝑘 = 2. Some students had trouble 

playing the game with a different 𝑘. Thankfully, with the help of Dr.Bracken, students were able to 

overcome this difficulty, and before beginning Part I, most students were able to play through the game 

with different values of 𝑘. Also, because the proof of |𝕁𝑛| = 𝑙𝑐𝑚[1,2, … , 𝑛] involves some number 

theory, which might have caused more confusion, I chose to state this as a fact without proof. A student 

in class raised a doubt as to why it is true. Since this is not a number theory class, I chose to walk her 

through the idea only briefly.  

In part II of the activity, there seemed to be too much information packed in. To review the group 

axioms, I chose to have students prove that 𝕁4 is a group using the axioms. Proving closure and inverses, 

again, involved number theory, which is not the topic of this course, so a different strategy was used, 

which was listing out all the 12 elements in 𝕁4. Since the class is small (estimated 14 students), I planned 

on splitting up the task so that each student only had to write out a few elements of 𝕁4 on the board. 
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Unfortunately, students chose to work in small groups (not on the board). Also, Dr. Bracken had only 

mentioned the term “alternating group” a few times before, so students might not have discovered that 

all elements in 𝕁4 are even on their own. Also, a short proof of the finite subgroup test was given with a 

lecture in class so that students could use this test in the later activity. Some students work is shown 

below. As their work suggested, some would be able to write out all 12 elements in 𝕁4.  

           

Figure 1 Selected Students work in Part II 

In part III of the activity, there was a huge misunderstanding derived from the last part of the activity. 

The goal was to have students either prove 𝕁6 is closed under composition (and hence 𝕁6 is a group by 

the finite subgroup test), or provide a counterexample to show that 𝕁6 is not closed (and hence 𝕁6 is not 

a group). In the interest of saving time, a hint was given to students to examine 𝐽6,2 and 𝐽6,3. The hope 

was for students to discover that 𝐽6,2 ∘ 𝐽6,3 ∉ 𝕁6. Yet, because alternating groups were mentioned in 𝕁4, 

some students chose only to show that 𝐽6,2 being even and 𝐽6,3 being odd implies that 𝕁6 is not a group, 

which is insufficient (as shown below in students work).  
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Figure 2 Selected Students work in Part III 

Overall, the main difficulty about my attempted implementation was the time. There was too much 

material/information packed in the activity to implement in one class period. Also, there were too many 

questions in the handout that students knew before the implementation (for example, students knew 

that function composition is associative). To save time, some questions can be cut to condense the 

handout. Ideally, more time should be spent walking through the prequel and part I of the activity so 

that students can feel more comfortable working through the rest of the activity, as one student pointed 

out that he/she felt behind throughout the whole activity.  

There is one more thing worth noticing during the implementation. As mentioned earlier, the Josephus 

problem can be programmed easily on a computer to find the position of the last survivor, as well as the 

sequence of people being killed. A student in class programmed the game to solve the entire activity. It 

occurred to me that this activity could also be a good exercise for computer science and students can 

see how computer science can be used to solve math problems.  
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Conclusion 

The Josephus problem is a well-known topic in mathematics and computer science, and it is related to a 

certain counting game. Most of the existing curriculum that has been developed to make use of this 

problem involves only exploring the recurrence relation to compute the position of the last survivor. In 

this project, we have also developed a lesson plan in the same topic, but we have added some extra 

material that allows students to discover a fun pattern using binary numbers.  

The main section of the activity concerns the set of Josephus permutations with a fixed 𝑛, denoted 𝕁𝑛. 

We showed that 𝕁𝑛 is a group when 𝑛 ∈ {1,2,3,4,5} and 𝕁𝑛 is NOT a group when 𝑛 ≥ 6. The activity is 

meant to provide students with an example of permutation groups in a specific context. Students are led 

to develop necessary knowledge in group theory (including the finite subgroup test, permutation 

groups, alternating groups, etc.) to work on the activity.  
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Appendix A Elements in 𝕁4  

The elements in 𝕁4 are recorded in the following table in the cyclic notation:  

𝒌 𝑱𝟒,𝒌 

𝟏 (1) 

𝟐 (1 2 4)(3) 

𝟑 (1 3 4)(2) 

𝟒 (1 4 2)(3) 

𝟓 (1)(2 3 4) 

𝟔 (1 2)(3 4) 

𝟕 (1 3)(2 4) 

𝟖 (1 4 3)(2) 

𝟗 (1)(2 4 3) 

𝟏𝟎 (1 2 3)(4) 

𝟏𝟏 (1 3 2)(4) 

𝟏𝟐 (1 4)(2 3) 

 

* 𝐽4,𝑘 represents the permutation generated by 𝑛 = 4 and 𝑘 ∈ ℕ.  

* All the fixed points are presented in the form of a 1-cycle.  

* The inverse pairs in 𝕁4 are : (𝐽4,2, 𝐽4,4), (𝐽4,3, 𝐽4,8), (𝐽4,5, 𝐽4,9), (𝐽4,10, 𝐽4,11), (𝐽4,6, 𝐽4,6), (𝐽4,7, 𝐽4,7), 

(𝐽4,12, 𝐽4,12).  
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Appendix B Elements in 𝕁5  

The elements in 𝕁5 are recorded in the following table in the cyclic notation:  

𝒌 𝑱𝟓,𝒌 

𝟏 (1 2 4 5 3) 

𝟐 (1 3 5 4 2) 

𝟑 (1 4 2 3 5) 

𝟒 (1 5 2)(3)(4) 

𝟓 (1)(2 3)(4 5) 

𝟔 (1 2 5 4 3) 

𝟕 (1 3 5)(2)(4) 

𝟖 (1 4)(2 5)(3) 

𝟗 (1 5 4)(2)(3) 

𝟏𝟎 (1)(2 4 3)(5) 

𝟏𝟏 (1 2)(3 5)(4) 

𝟏𝟐 (1 3 5 2 4) 

𝟏𝟑 (1 4 2)(3)(5) 

𝟏𝟒 (1 5)(2 3)(4) 

𝟏𝟓 (1)(2 5 3)(4) 

𝟏𝟔 (1 2 3 5 4) 

𝟏𝟕 (1 3 4 2 5) 

𝟏𝟖 (1 4 5)(2)(3) 

𝟏𝟗 (1 5 3 2 4) 

𝟐𝟎 (1)(2)(3 5 4) 

𝟐𝟏 (1 2 4 3 5) 

𝟐𝟐 (1 3 4 5 2) 

𝟐𝟑 (1 4)(2 3)(5) 

𝟐𝟒 (1 5 4 3 2) 

𝟐𝟓 (1)(2 3 5)(4) 

𝟐𝟔 (1 2 5 3 4) 

𝟐𝟕 (1 3 4)(2)(5) 

𝟐𝟖 (1 4 3 2 5) 

𝟐𝟗 (1 5 3)(2)(4) 

𝟑𝟎 (1 2 4 5 3) 

 

 

𝟑𝟏 (𝟏)(𝟐 𝟒)(𝟑 𝟓) 

𝟑𝟐 (1 2)(3 4)(5) 

𝟑𝟑 (1 3 2 4 5) 

𝟑𝟒 (1 4 5 3 2) 

𝟑𝟓 (1 5 4 2 3) 

𝟑𝟔 (1)(2 5)(3 4) 

𝟑𝟕 (1 2 3 4 5) 

𝟑𝟖 (1 3 2 5 4) 

𝟑𝟗 (1 4 3)(2)(5) 

𝟒𝟎 (1 5 2 4 3) 

𝟒𝟏 (1)(2)(3 4 5) 

𝟒𝟐 (1 2 4)(3)(5) 

𝟒𝟑 (1 3 2)(4)(5) 

𝟒𝟒 (1 4 5 2 3) 

𝟒𝟓 (1 5 3 4 2) 

𝟒𝟔 (1)(2 3 4)(5) 

𝟒𝟕 (1 2 5)(3)(4) 

𝟒𝟖 (1 3)(2)(4 5) 

𝟒𝟗 (1 4 2 5 3) 

𝟓𝟎 (1 5)(2)(3 4) 

𝟓𝟏 (1)(2 4 5)(3) 

𝟓𝟐 (1 2)(3)(4 5) 

𝟓𝟑 (1 3)(2 4)(5) 

𝟓𝟒 (1 4 3 5 2) 

𝟓𝟓 (1 5 2 3 4) 

𝟓𝟔 (1)(2 5 4)(3) 

𝟓𝟕 (1 2 3)(4)(5) 

𝟓𝟖 (1 3)(2 5)(4) 

𝟓𝟗 (1 4)(2)(3 5) 

𝟔𝟎 (1 5)(2 4)(3) 

* 𝐽5,𝑘 represents the permutation generated by 𝑛 = 5 and 𝑘 ∈ ℕ.  

* All the fixed points are presented in the form of a 1-cycle.  

 


